
On Board Planning for Autonomous Spacecraft

Nicola Muscettola1 Ben Smith3

Chuck Fry2 Steve Chien3

Kanna Rajan2 Gregg Rabideau3

David Yan3

Computational Sciences Division Jet Propulsion Laboratory

California Institute of Technology

NASA Ames Research Center

Moffett Field CA 94035

4800 Oak Grove Drive M/S 525-3660

Pasadena, CA 91109-8099

{mus, chucko, kanna}

@ptolemy.arc.nasa.gov

{smith, chien, rabideau, yan}

@aig.jpl.nasa.gov

1 Recom Technologies
2 Caelum Research

3 Work performed under contract from the National Aeronautics and Space Agency.

Abstract—The Deep Space One (DS1)
mission, scheduled to fly in 1998, will be the
first spacecraft to feature an on-board planner.
The planner is part of an artificial intelligence
based control architecture that comprises a
planner/scheduler, a plan execution engine, and
a model-based fault diagnosis and
reconfiguration engine. This autonomy
architecture reduces mission costs and
increases mission quality by enabling high-
level commanding, robust fault responses, and
opportunistic responses to serendipitous
events. This paper describes the on-board
planning and scheduling component of the DS1
autonomy architecture.

1. INTRODUCTION

The first mission of the New Millennium
program (NMP)—Deep Space One (DS1), to
launch in 1998—will feature an experimental
on-board autonomy software system, the
Remote Agent (RA). RA is an artificial
intelligence based control system derived from
the NewMaap technology demonstration [1].
RA has three components: the Executive
(EXEC) [2], the Planner/Scheduler (PS), and
the Mode Identification and Recovery engine
(MIR) [3]. In this paper we describe PS.

RA is crucial for the future of space
exploration because it enables reduction of
mission costs and increases mission quality in
several ways; some of these improvements are
specific to RA’s use of an on-board PS. First,
because of its hierarchical architecture and its
ability to generate plans on-board, RA enables
commanding the spacecraft with fewer high

level commands. Second, RA autonomously
responds and recovers from failures that would
normally require costly and time consuming
ground intervention. PS supports failure
response by looking in the future and
deliberating about mission goal trade-off and
global interactions: the rest of RA handles
localized real-time failures that require quick
reactions. Finally, on-board planning enables
taking advantage of fortuitous events, such as
better than expected resource consumption or
serendipitous science discoveries (e.g.,
volcanoes on Io). This opens up fundamentally
new and exciting unmanned space exploration
missions where round-trip light time does not
permit joy-sticking a spacecraft from Earth.

In this paper first we quickly describe the
DS1 mission . Then we introduce the concept
of high level commanding enabled by RA,
contrast it to traditional sequencing, and
highlight the role played by PS. Finally we
describe more in detail the features and
capabilities of the on-board PS.

2. THE DS1 MISSION

Spacecraft used by NMP missions are
relatively inexpensive (e.g. the DS1 Mission is
capped at $138.5 million) and must serve the
primary objective of validating new
technologies in flight; doing planetary science
is an additional objective but one that also has
the effect of stress-testing the technologies.
This ordering of priorities allows the
development and validation of technologies that
would not pass the stringent reliability
requirements imposed by typical planetary

PLANNER
SCHEDULER

MISSION
MANAG ER

EXECUTI VE

PLANN ING
EXPERTS

From Grou nd To Real Time Control

Figure 1: High Level Commanding

science missions. If the new technologies
prove worthy on an NMP flight, then they will
be used on future science missions.

The nominal DS1 mission is to launch in
July 1998, fly by Asteroid 3352 McAuliffe in
January 1999 taking a series of images, and
then fly by Comet West-Kohoutek-Ikemura in
June 2000. There will be comparatively
infrequent ground communication coverage
throughout the mission, only one Deep Space
Network pass every two weeks. DS1 will carry
aboard several new technologies. During cruise
preceding the first encounter each new
technology will go through validation
experiments. The RA is one of these
technologies. Others include the on-board
optical navigator (NAV), the ion-propulsion
engine (IPS), and the Miniature Integrated
Camera Spectrometer (MICAS).

RA is an experimental spacecraft control
system. It consists of three components: the
Planner/Scheduler (PS), the Executive
(EXEC), and the Mode Identification and
Recovery system (MIR). PS receives a set of
high-level mission goals from an on-board
mission profile and generates a plan—a set of
synchronized procedures. Once executed, these
commands will achieve the mission goals
without violating resource, temporal, or safety
constraints. The EXEC takes each plan
procedure, decomposes it into low-level real-
time commands and ensures the correct
dispatching of these commands. MIR monitors
device responses to commands, identifies
faulty components, and suggests recovery
actions to EXEC.

3. HIGH LEVEL COMMANDING

The RA architecture enables a new
approach to spacecraft commanding, high-level
commanding. PS is the primary module
through which high level commanding
happens. In this approach, ground interacts
with a spacecraft through abstract directives or
g o a l s instead of detailed streams of
instructions. The responsibilities of PS are: (1)
to select among the proposed goals those to be
achieved at any point in time; (2) to
compromise between the level of achievement
of the selected goals, and (3) to expand the
procedures needed to achieve the goals. PS
ensures the satisfaction of various
synchronization constraints among procedures
and resolves resource conflicts. The set of
expanded procedures and constraints among
them constitutes a plan.

In contrast, in the traditional approach a
spacecraft is commanded with a sequence of
ti t d d t th l ti d i

drivers. Such a sequence could be highly
optimized to “squeeze” as much performance as
possible out of the spacecraft. However,
temporal and resource constraints and fault
protection goals also have to be ensured at an
extremely detailed level. The consequence is
that developing a sequence is a very exacting
and time consuming process, often requiring
months of manual labor. Once generated, a
sequence is very difficult to modify.

Three are the primary benefits of high-level
commanding when compared to traditional
sequencing: modularity, execution flexibility
and robustness.

〈 Modularity: a PS plan makes very
explicit the hierarchical decomposition of
responsibilities between the different flight
software components. Each plan procedure is
expanded by EXEC into fairly complex
sequences of real-time commands on the basis
of actual execution conditions. Since the plan
already resolves synchronization and resource
allocation constraints among procedures, this
expansion is highly localized and, therefore,
greatly simplified. Extensive validation of these
small sequences is much simpler than the
validation of those generated in the traditional
approach.

〈 Execution flexibility: Procedures in a
plan can be potentially executed in parallel. The
plan explicitly represents and maintains
temporal constraints between concurrent
procedures. For example, a temporal constraint
can express that procedure A must start from
30 to 60 minutes after procedure B, or that
procedure B must execute while procedure C is
executing, or that procedure A ends exactly
when procedure C starts. PS ensures the
consistency of the network of temporal
constraints in the plan and infers time ranges
during which a procedure can start and end.
Unlike simple time tags, time ranges give
EXEC the flexibility to compensate for
execution delays caused by locally recoverable
failures.

〈 Robustness: an on-board planner can

contained_ by

thrust (B)

point (B)

idle

turn(B, C)

m eets

warm_up

turn(A,B)

meets

Engi ne

A tti tude

Figure 2: Example Timelines

robust than traditional sequencing. In the
traditional approach, a sequence is infrequently
uplinked to a spacecraft and therefore needs to
include contingencies to handle a wide variety
of failure conditions. In a “fail operational”

scenario (e.g., a scenario in which the
spacecraft autonomously recovers from a fault)
the on-board sequence must be restarted, it
must command the assessment of the new
execution conditions, and react conditionally on
the basis of this assessment. Because of the
large number of possible failure conditions and
the low level of the instructions in a sequence,
the size of a robust sequence can be very large
and the effort needed to build it very high. This
is why “fail operational” scenarios are avoided
as much as possible in traditional mission and
are usually confined to critical mission phases
(e.g., Cassini Saturn Orbit Insertion,
encounter). In the RA approach, plans are valid
only for the execution conditions known at the
time PS was invoked and therefore the
sequence of real-time commands issued is
simpler and smaller. When execution
conditions differ so much from the initial
assumptions that local failure recovery is
insufficient, execution of the plan stops and PS
is asked for a new plan that takes into account
the new situation. Dealing with fault conditions
on an as-needed basis simplifies the solution of
the fault protection problem.

4. GENERATING PLANS FROM GOALS

Figure 1 describes how the DS1 PS
implements high-level commanding within the
RA architecture. A long-term plan containing
goals for the entire mission, the mission
profile, is stored and maintained on-board by
the Mission Manager (MM). G r o u n d
operations interacts with MM to add, modify
and delete goals in the mission. MM also
responds to EXEC’s requests for new plans by
selecting a new set of goals from the mission
profile, combining it with initial spacecraft state
information provided by EXEC and sending it
to PS. The time horizon covered by PS is
typically two weeks during cruise and a few
days during encounter. When a plan is ready,

completed execution of its current plan, it sends
a new request to MM; this also happens when
the EXEC is maintaining the spacecraft in
standby mode after the occurrence of a major
failure. In this case the initial spacecraft state
will clearly identify which capabilities (if any)
have been degraded by the fault. PS takes this
information into consideration when generating
the new plan.

Besides the mission profile, goals also
come from other on-boards systems, the
planning experts. For example, NAV
communicates to PS of which beacon asteroids
it needs pictures in order to estimate the current
spacecraft position. The use of goals generated
on board means that the spacecraft can modify
its behavior, based on new information not
known to ground. This capability is particularly
important if the spacecraft has only infrequent
contact with the ground or if ground reaction is
too slow to take advantage of serendipitous
opportunities. Goals generated on-board are
incorporated in the plan during plan generation.

Plan representation

Both PS and MM use the same underlying
system to represent, the plan database. A plan
database is organized in several parallel
timelines, each comprised of a sequence of
tokens. A timeline describes the future
evolution of a single component of the
spacecraft’s state vector. The set of tokens
active at a given time represent the state vector
value at that time. Goals and procedures are
both represented as tokens. Each token consists
of a state variable descriptor (specifying to
which timeline the token belongs), a type (a
symbolic representation of the goal or
procedure and its parameters), a start-time, an
end-time and a duration. Timelines can also
represent renewable resources such as battery
state of charge, non-renewable resources such
as fuel, and aggregate resources (i.e.,
resources that can be allocated in parallel to
several consumers) such as electric power.
Temporal constraints synchronize resource
allocation tokens with the corresponding
consumer tokens. The type of the resource
tokens indicate the amount requested and the
modality of consumption (e.g., constant, linear
depletion).

For example (Figure 2), a plan timeline
may describe the state of the engine (warming
up, thrusting, or idle) and another for the
spacecraft attitude (e.g., pointing to a target,
turning from target A to target B). The plan
database also explicitly represents temporal

t i t b t t k Th i l d

(MICAS_On)
 :compatibilities
 (AND
 (met_by (MICAS_Turning_On))
 (meets (MICAS_Turning_Off))
 (equal (REQUEST (Power 15)))

Figure 3: A Compatibility Tree

constraints synchronizing tokens on separate
timelines (e.g., “the spacecraft attitude must be
pointing to target B while the engine is
thrusting”) and ordering tokens on the same or
different time lines (e.g., “before the spacecraft
can point to attitude A it must turn from its
previous attitude B to A”).

One important feature of the plan database
is that decision variables (e.g., start or end
time) and constraints among them are explicitly
represented. The database then uses constraint
propagation to infer valid ranges of values for
variables and to detect inconsistencies (e.g.,
contradictory temporal constraints between
tokens). This allows PS to concentrate on
establishing constraints instead of selecting
exact values for decision variables, an approach
that often avoids over-commitment errors and
therefore minimizes backtracking on earlier
commitments.

The plan database can represent a plan at
any stage of partial completion. Unlike
complete plans, incomplete plans can have gaps
between tokens on a timeline. Also, an
incomplete plan may include an as-yet-
unimplemented request for a constraint between
tokens (see the section “The Domain Model”).
The presence of these gaps and unfulfilled
requests prompts PS to add tokens and
constraints until the plan is complete. More
representational details on the plan database can
be found in [4].

The Domain Model

In a valid plan tokens must satisfy many
constraints, including ordering (e.g., the
catalyst-bed heaters must warm up for ninety
minutes before using the reaction control
thrusters), synchronization (e.g. the antenna
must be pointed at the Earth during uplink,)
safety (e.g. do not point the radiators within
twenty degrees of the sun), and resource
constraints (e.g. the MICAS camera requires
fifteen watts of power). These are all expressed
as temporal and parameter type constraint
templates, or compatibilities, among token
prototypes. The planning model is a set of
compatibilities that must be satisfied in every

l t l M f ll tibilit

is a temporal relation that must hold between a
master token and a target token whenever the
master token appears in the plan. If the master
token does not occur in the plan, the relation
does not need to be satisfied. Compatibilities
also specify relations between arguments in the
master token type and value equivalence
between arguments in the master and in the
target token types. All compatibilities
associated to a token are organized into a
Boolean compatibility tree.

A simple compatibility tree is shown in
Figure 3. It says that the state in which the
MICAS camera is on must be preceded by a
state in which it is turning on, and followed by
one in which it is turning off. While the camera
is on, it consumes fifteen watts of power.

Planning Algorithm

The planner searches in the space of
incomplete or partial plans [5] with additional
temporal reasoning mechanisms [6 and 4]. As
with most causal planners, PS begins with an
incomplete plan (given to it by MM) and
attempts to expand it into a complete plan. The
plan is complete when it satisfies all of the
compatibilities in the plan model and there are
no gaps on any timeline. The set of “defects”
that need to be fixed in an incomplete plan in
order for it to become complete is called the
plan conflicts. Figure 4 summarizes the basic
“conflict fixing” loop by PS. Each decision is
typically made using heuristics and, when
heuristic information is not particularly strong,
using a uniform randomized rule (deterministic
random number generator). If the wrong
decision is made, PS will eventually reach a
dead end, backtrack, and try a different path.

For example, consider one of the possible
conflict types, open compatibility. An open
compatibility is a temporal and parametric
constraint that must exist between a master
token already in the plan and a target token that
may or may not be in the plan. For example,
the compatibility A meets B is open if A is in
the plan but B is not, or if both A and B are in
the plan but the relation A meets B is not
explicitly enforced. PS can satisfy an open
compatibility with one of three resolution
strategies. It can add the target token to the plan
in such a way that it satisfies the temporal
relation; it can adjust the start or end time of
either the target or master token in order to
satisfy the relation; or, it can decide that the
relation will be satisfied by a token in the next
planning horizon, and can therefore be ignored.
These options are called adding, connecting,

d d f i l D f d

compatibilities are maintained in the plan and
carried forward to the next planning horizon as
part of the initial state. PS will chose one of
these options when it addresses an instance of
an open compatibility conflict.

5. GOAL PRIORITIZATION

The overall mission goals depend on
achieving a careful balance between potentially
conflicting goals generated by independent
sources (e.g., the science team, the navigation
team). Conflicts typically arise because of over-
subscription of limited resources (e.g., power,
time). When a compromise is possible, PS
appropriately distributes the use of available
resources. When a compromise is not possible,
then PS selects some of the lowest priority
goals for postponement or outright rejection.

In PS tokens that have not yet been inserted
onto a timeline, or free token, constitute a
conflict category for which one of the possible
resolution strategies is to reject the token. PS
decides if the free goal token will be inserted.
In DS1 PS does not explore all possible
permutations of free token achievements but
follows a statically assigned prioritization
scheme (e.g., science goals have highest
priority, followed by navigation goals and then
by telemetry goals). This scheme, sufficient for
DS1, avoids exponential backtracking but can
yield sub-optimal solutions. Enhanced goal
prioritization will be included in future PS
versions.

6. FAILURE RESPONSE

RA provides a two level failure response —
an immediate reactive response, and a longer
term deliberative response. This is typical of
many autonomy architectures (e.g., Soar [7],
Guardian [8]). The fast, real-time reactive
behavior is implemented by EXEC and MIR. If
this fails to solve the problem within the time
and resource constraints of the current plan,
then the failure can endanger future goals in the
plan. In this case EXEC puts the spacecraft in
standby, PS is called to assess the failure’s
impact on the remaining goals to decide how to
best proceed. The deliberative response also
addresses “advantageous failures” (e.g.,
serendipitous discoveries) and is the basis for
enabling fundamentally new types of science
missions.

This two level response results in simpler
and more robust plans facilitating spacecraft
commanding. The plans are simpler since they
can address only the nominal case and trust that
failures will be handled properly as they arise.
Failures are either resolved by the reactive layer

While plan has open compatibilities:
 1.pick an open conflict;
 2.select and apply a resolution strategy;

3.if no resolution is possible, backtrack

Figure 4: Planning Loop

and allow the plan to continue, or cannot be
resolved, in which case the plan breaks and the
PS generates another nominal plan based on the
new spacecraft state.

The plans are also more robust. This is
partly due to the failure response mechanism,
partly due to the hierarchical nature of the RA,
and partly due to the plan representation. The
hierarchy allows the tokens in the plan to
describe fairly abstract procedures. The plan
representation allows flexible start and end
token times. Therefore EXEC has wide latitude
in executing tokens, being allowed to respond
to failures by retrying commands or trying
alternate approaches. The extra failure response
time needed is absorbed by the flexibility in the
token’s start and end times.

7. CONCLUSIONS

On-board planning is crucial for spacecraft
autonomy. It can reduce mission costs and
improve mission quality by allowing high-level
commanding, enabling achievement of mission
goals in the presence of failures without ground
intervention, and taking advantage of fortuitous
events. The DS1 mission marks the first on-
board planner to fly on a spacecraft. The
validation of this technology will open the way
for future autonomous missions.

REFERENCES

[1] Pell, B., Bernard, D., Chien, S., Gat, E.,
Muscettola, N., Nayak, P., Wagner, M. and Williams,
B. 1996. A remote agent prototype for spacecraft
autonomy. In Proceedings of the SPIE Conference on
Optical Science, Engineering and Instrumentation.

[2] Pell, B., Gat. E., Kesing, R., Muscettola, N., and
Smith, B., 1997., Plan Execution for Autonomous
Spacecraft in IJCAI 97 (forthcoming).

[3] Williams, B.C., and Nayak, P.P., 1996. A model-
based approach to reactive self-configuration systems. In
Proceedings of AAAI-96, pp 971-978.

[4] Muscettola, N. 1994. HSTS: Integrating planning
and scheduling. In Fox, M., and Zweben, M., eds,
Intelligent Scheduling, Morgan Kaufman.

[5] Weld, D.S., 1994. An Introduction to Least
Commitment Planning, AI Magazine Winter 1994.

[6] Allen, J.F. and Koomen, J.A. 1983. Planning using
a temporal world model. IJCAI 83. pp. 741-747.

[7] Tambe, M., Johnson, W.L., Jones, R.M., Koss, F.,
Laird, J.E., Rosenbloon, P.S., and Schwamb, K.
1995. Intelligent agents for interactive simulation
environments. AI Magazine, 16(1):15-39.

[8] Hayes-Roth, B. 1995. An architecture for adaptive
intelligent systems. Artificial Intelligence 72.

